The Definability of Fields
نویسندگان
چکیده
منابع مشابه
control of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولSubfields of Ample Fields I. Rational Maps and Definability
Pop proved that a smooth curve C over an ample field K with C(K) 6= ∅ has |K| many rational points. We strengthen this result by showing that there are |K| many rational points that do not lie in a given proper subfield, even after applying a rational map. As a consequence we gain insight into the structure of existentially definable subsets of ample fields. In particular, we prove that a perfe...
متن کاملRelative decidability and definability in henselian valued fields
Let (K, v) be a henselian valued field of characteristic 0. Then K admits a definable partition on each piece of which the leading term of a polynomial in one variable can be computed as a definable function of the leading term of a linear map. The main step in obtaining this partition is an answer to the question, given a polynomial f(x) ∈ K[x], what is v(f(x))? Two applications are given: fir...
متن کاملDefinability and Fast Quantifier Elimination in Algebraically Closed Fields
The Bezout-Inequality, an afine version (not in&ding multiplicities) of the classical Bezout-Theorem is derived for applications in algebraic complexity theory. Upper hounds for the cardinality and number of sets definable by first order formulas over algebraically closed fields are given. This is used for fast quantifier elimination in algebraically closed fields.
متن کاملDiophantine Definability and Decidability in the Extensions of Degree 2 of Totally Real Fields
We investigate Diophantine definability and decidability over some subrings of algebraic numbers contained in quadratic extensions of totally real algebraic extensions of Q. Among other results we prove the following. The big subring definability and undecidability results previously shown by the author to hold over totally complex extensions of degree 2 of totally real number fields, are shown...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chaos, Solitons & Fractals
سال: 1999
ISSN: 0960-0779
DOI: 10.1016/s0960-0779(98)00143-x